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A method based on the XYZLMS interim connection space is proposed to accurately acquire the  multi-spectral 
images by digital still cameras. The XYZLMS values are firstly predicted from RGB values by  polynomial 
model with local training samples and then spectral reflectance is constructed from XYZLMS values by 
 pseudo-inverse method. An experiment is implemented for multi-spectral image acquisition based on a 
 commercial digital still camera. The results indicate that multi-spectral images can be accurately acquired 
except the very dark colors.

OCIS codes: 330.1715, 330.1730, 110.4234.
doi: 10.3788/COL201412.113302.

Multi-spectral images have great application prospects 
in digital arching, computer vision, computer graphics, 
high-fidelity color representation, and reproduction[1–3]. 
There are many techniques for multi-spectral image 
acquisition, such as multi-sensor based, filter based, 
and light-emitting diode (LED) light sources-based 
multi-spectral imaging systems[4]. Although they can 
accurately obtain multi-spectral images, most of these 
systems are complicated, expensive, and inconvenient, 
which prevent many practical applications, such as 
those in common illuminating environments with cam-
eras to get multi-spectral images[5]. Many methods have 
been proposed to predict the spectral reflectance from 
RGB values of digital cameras, such as the widely used 
Wiener method[6,7] and the constrained least-squares 
(CLS) method[8]. In this work, a method based on com-
mon digital still cameras is proposed to acquire multi-
spectral images, and an experiment is implemented to 
verify the performance of the proposed method.

The greatest difficulty for common cameras to acquire 
multi-spectral images is that there are only three chan-
nels in the cameras. It is generally believed that at least 
six channels are required to accurately acquire multi-
spectral images[9]. The XYZLMS interim connection space 
has been proposed to accurately represent multi-spectral 
images[10]. If the XYZLMS values can be accurately pre-
dicted from RGB values, then multi-spectral images 
can be accurately acquired from the common cameras. 
The XYZ values can be accurately predicted from RGB 
values with polynomial, back propagation (BP) neural 
network, and look-up table (LUT) methods[11]. Then the 
key point is that how to predict LMS values from RGB 
values. Figure 1 shows the x (λ), y (λ), z (λ), l (λ), m (λ), 
and s (λ) stimulus values in the XYZLMS space, and 
the spectral sensitivity functions r (λ), g (λ), and b (λ) of 
a Cannon 60D  commercial  camera, which is  measured 

by a spectrophotometer[12]. It appears that the L and S 
values cannot be accurately predicted as the correlation 
relationship between l (λ), s (λ) and r (λ), g (λ), b (λ) is 
low. Fortunately, the spectral reflectances of real-world 
objects are smooth functions of  wavelength[13]. The L and 
S values somehow have the same variation trend with 
the RGB values, which can connect the correlation rela-
tionship between RGB and L, S values. In other words, 
there are great possibilities for the prediction of L and S 
values from RGB values for real-world objects. To verify 
this point, an experiment was implemented for the Z 
value prediction from RGB values, and similar conclu-
sion can be derived for the L and S values prediction. 
As shown in Fig. 1, there is little correlation relationship 
between z (λ) and r (λ), so both of the following polyno-
mial models were adopted for the Z value prediction to 
investigate whether the R values have contribution to 
the Z value prediction.
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Fig. 1. Spectral distribution of the nine stimulus values.
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where r, g, and b denote the RGB values normalized by 
the maximum RGB values of the captured image, and 
as(s = 0, 1   10 ) and ct(t = 0, 1   5) denote the 
coefficients of the polynomial model.

The Z value of each color patch in Gretag Macbeth 
ColorChecker Semi Gloss (CCSG) color chart was pre-
dicted with the other color patches as training samples. 
The mean and maximum errors of predicted Z values 
for all the color patches are 0.55 and 2.32 for Eq. (1), 
while for Eq. (2) are 0.77 and 3.13, respectively, which 
indicated that R values play an important role in the Z 
value prediction, although there is no strong correlation 
relationship between z (λ) and r (λ).

For each object with spectral reflectance r (λ), the 
corresponding XYZLMS values can be calculated by
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where I1(λ) and I2(λ) denote the spectral power distri-
butions of the illuminants, and λmin and λmax represent 
the minimum and maximum values of the spectral 
wavelength in the visible light range. The variables in 
Eqs. (3)–(6) can be sampled on the range from 400 to 
700 nm at 10 nm intervals without significant loss of 
accuracy for most applications. Then the XYZLMS val-
ues can be determined by
 t = Fr, (7)
where t is a 6×1 matrix and represents the XYZLMS 
values, F is a 6×31 matrix with rows being the samples 
of I1(λ)x (λ), I1(λ)y (λ), I1(λ)z (λ), I2(λ)l (λ), I2(λ)m (λ),  
and I2(λ)s (λ), respectively, and r is a 31×1 matrix and 
represents the spectral reflectance of a sample.

There are two steps for the multi-spectral images acqui-
sition, XYZLMS values prediction from RGB values and 
spectral reflectance construction from XYZLMS values. 
Various methods can be used for XYZLMS prediction  
and spectral reflectance construction. The 11 terms 
polynomial model[14] is adopted for the XYZLMS value 
prediction in this work. The forms of the polynomial 
model for XYZLMS value prediction are similar as 
Eq. (1). The polynomial model with n training sam-
ples could be written as
 A = MC, (8)
where A is a n×6 matrix and represents the XYZLMS 
values of the n training samples, M is a n×11 matrix 
and denotes the terms of the polynomial model, and 
C is a 11×6 matrix and denotes the coefficients of the 
polynomial model. As the corresponding relationship 
between RGB and XYZLMS values varies with the 
RGB location in the RGB color gamut, it is difficult to 
accurately estimate all the XYZLMS values with only 
one transformation matrix. So the local training sam-
ples were adaptively selected for each candidate sam-
ple according to the RGB location in the color gamut. 
Then the coefficient matrix C can be determined by 
the least-squares method with the selected local train-
ing samples as  
 1( ) ,−= ′ ′C M M M A  (9)
where the prime mark and superscript “-1” means 
 matrix transpose and inverse, respectively. 

After the XYZLMS values are predicted with the poly-
nomial model, the pseudo-inverse method[15] is  employed 
for the spectral reflectance construction from the pre-
dicted XYZLMS values in this work. The spectral reflec-
tance r�  can be constructed based on Eq. (7) as
 1 ,=r Wt�  (10)
where t1 is a 6×1 matrix and represents the predicted 
XYZLMS values. W is the 31×6 matrix that denotes 
the transformation matrix, which is determined by
 W = Nt ×PINV(Tt), (11)
where Nt is a 31×l matrix, Tt is a 6×l matrix, Nt 
and Tt represent the spectral reflectance and XYZLMS 
 value sets of the selected local training samples, respec-
tively, and PINV(Tt) means the Moore–Penrose pseu-
do-inverse of matrix Tt.

To verify the spectral image acquisition accuracy of 
the proposed XYZLMS method, the CCSG and two 
printed color charts, LUT, and European Color Initia-
tive (ECI) color chart were used as training and testing 
samples. The LUT color chart, with notes of 0, 20, 40, 
60, 80, and 100 for each of the C, M, Y, and K channel, 
totally contained 1296 color patches, covering the whole 
color gamut of the printer. The ECI color chart, with 
1485 color patches evenly distributed in the CMYK color 
space, has been widely used in the colorimetric charac-
terization of printer and press. The LUT and ECI color 
charts were printed by an HP Desk Jet ink printer, and 
the  corresponding spectral reflectance of each patch in 
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the two color charts was measured by an X-rite i1isis 
automatic scanning spectrophotometer after the color 
charts were totally naturally dried out. The raw images 
of CCSG and two printed color charts were captured 
by a Cannon 60D commercial camera under the Huali 
CPL-124Z fluorescent light source. The focal length of 
the camera was set to 58 mm, aperture size was f/5.6, 
shutter speed was 1/6 s, ISO was 100, resolution was 
5184×3456, and bit depth was 14. The mean RGB value 
in the central 30×30 pixel region was calculated to rep-
resent the RGB response of each color patch in the color 
charts.

The raw RGB values of the LUT, ECI, and CCSG 
color charts were firstly normalized by the maximum 
RGB values of the captured image. Here the maximum 
RGB value is 4000. Then the normalized RGB values 
and corresponding measured spectral reflectance of 
the LUT color chart were adopted as training samples 
for parameter determination of the polynomial and 
 pseudo-inverse models. The normalized RGB values of 
the ECI and CCSG color charts combining with the 
corresponding measured spectral reflectance were used 
to verify the spectral reflectance construction accuracy 
of the proposed method. The colorimetric prediction  
accuracy of the ECI and CCSG color charts are listed in 
Table 1, in which the CIEDE2000 color differences[16–18] 
of the measured and estimated spectral reflectance were 
 calculated under CIE illuminants (A, D50, D65, D90, 
F2, F7, F11) and four actual LED light sources (LED1: 
Cooper DL11, LED2: GE Par30, LED3: OsramDiachroic,  
LED4: SoluxDiachroic)[19], respectively. 

The results of Table 1 show that the colorimetric 
prediction accuracies are extremely high for the ECI 
color chart, whereas a little lower for the CCSG color 
chart. The main reason is that there is still somewhat 
media metamerism problem[20,21] for the spectral image 
acquisition based on digital cameras when the media 
of training and testing samples are different. In fact, 

the estimated spectral reflectance of the CCSG color 
charts with bigger errors are mainly concentrated in 
the dark colors (Fig. 2), which illustrates the measured 
and estimated spectral reflectances of the patches with 
CIEDE2000 color differences[22] greater than 4. This is 
 because that the signal-to-noise ratio of RGB value is 
low for the dark colors. In other words, the RGB  errors 
are relatively high for the dark colors, which firstly 
 affected the prediction accuracy of the XYZLMS values, 
then further affected the spectral reflectance construc-
tion accuracy. In addition, the correlations between the 
RGB and XYZLMS values are low as the RGB and 
XYZLMS values are small for the dark colors, which 
also increased the prediction errors in XYZLMS values, 
further affecting the spectral reflectance construction 
 accuracy. This phenomenon also happens to other multi-
spectral imaging systems. Table 1 also shows that there 
are no significant differences for the prediction accuracy 
under different illuminants and light sources both for 
the ECI and CCSG color charts, which indicates that 
the prediction accuracies have no wavelength selectivity 
although there are only three color channels in the cam-
era and some wavelength in the visible light range was 
little covered by the three spectral sensitivity functions. 
In addition, the mean CIEDE2000 color differences  
under all the illuminants and light sources are 1.05 and 
2.11 for ECI and CCSG color charts, respectively, and 
they are both within the color difference tolerance in 
the printing industry[22], which indicates that the pro-
posed method has great practical application prospect.

To further verify the spectral prediction accuracy and 
compare the proposed XYZLMS method with other 
methods, the Wiener[6] and CLS methods[8] were also 

Fig. 2. Measured and estimated spectral reflectances of the 
CCSG color chart with color differences greater than 4.

Table 1. Colorimetric Prediction Accuracy of the 
Proposed XYZLMS Method

ECI CCSG

Mean Max. %>4 Mean Max. %>4a

ΔE *00

A 1.066 4.699 0.202 2.503 9.351 18.750 
D50 1.044 4.347 0.269 1.649 9.940 4.167 
D65 1.037 4.233 0.202 2.000 10.033 7.292 
D90 1.035 4.227 0.135 2.563 10.107 20.833 
F2 1.069 4.351 0.067 2.118 9.181 5.208 
F7 1.040 4.195 0.202 1.960 10.200 5.208 
F11 1.048 4.400 0.269 1.744 10.330 4.167 

LED1 1.064 4.282 0.067 2.210 9.329 12.500 
LED2 1.092 4.598 0.202 2.478 9.310 17.708 
LED3 1.064 4.778 0.202 2.345 9.485 16.667 
LED4 1.045 4.439 0.269 1.653 9.872 4.167 

a%>4 represents the percentage of testing samples with color 
differences greater than 4 CIEDE2000 units.
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implemented with the LUT and ECI color chart as 
training and testing samples, respectively. The statisti-
cal results of root-mean-square error (RMSE) and good-
ness-of-fit coefficient (GFC)[23] between the measured 
and predicted spectral reflectance is shown in  Table 2. 
The results indicate that the proposed XYZLMS meth-
od performed better than the Wiener and CLS meth-
ods both according to the RMSE and GFC criteria. In 
addition, the proposed method is much more efficient 
than the other methods as the XYZLMS values can be 
directly used in spectral image compression and gamut 
mapping in spectral image reproduction[10].    

In conclusion, the colorimetric and spectral pre-
diction accuracies of the proposed method are high 
for the ECI and CCSG color charts except the dark 
colors, and the prediction accuracies have no wave-
length  selectivity. The proposed method can be used 
to  acquire multi-spectral images, especially when the 
media of training samples are designed same as the 
candidate object  requiring spectral image acquisition. 
Another advantage of the proposed method is that 
the predicted XYZLMS values can be directly used for 
spectral image reproduction as the XYZLMS space is 
a competitive interim connection space in the spectral 
color management system.
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